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Abstract

The geometrical calibration of a high-definition camera
rig is an important step for 3D film making and computer
vision applications. Due to the large amount of image
data in high-definition, maintaining execution speeds
appropriate for on-set, on-line adjustment procedures is
one of the biggest challenges for machine vision based
calibration methods. Our aims are to provide a low-cost,
fast and accurate system to calibrate both the intrinsic
and extrinsic parameters of a stereo camera rig. We first
propose a novel calibration target that we call marker
chessboard to speed up the corner detection. Then we
develop an automatic key frame selection algorithm to
optimize frames used in calibration. We also propose a
bundle adjustment method to overcome the geometrical
inaccuracy of the chessboard. Finally we introduce an
online stereo camera calibration system based on the above
improvements.

1. Introduction

In 3D film making, one of the main problems is stereo
camera calibration which aims to match the two camera
images in their optical characteristics and to align them
optomechanically. Typically this includes compensating
for differences in focal length, distortion, position and
orientation leaving the separation of the cameras that
produces the intended stereo baseline (and possibly their
convergence) as the only difference between the camera
pair. Calibration and alignment are critical since only
tenths of millimeters of difference in a camera setting can
cause many pixels displacement on the screen. Spurious
disparities due to misalignment can degrade fusion[3],
stereoscopic depth perception [12], and comfort [17, 16]
leading to a poor stereoscopic experience for viewers.

On set camera calibration needs to be performed
effectively and efficiently to avoid costly delays in
production. Though there are many commercial systems
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Figure 1: Marker chessboard.

available for stereo calibration, they may be too expensive
for independent film-makers. For instance the Stereo Image
Processor (3ality Technica, Burbank CA) uses hardware
image processing and closed loop camera motor control
to estimate and automatically adjust stereo rig alignment.
Such a system is far beyond the budget of independent and
modest productions, which rely on manual adjustment of
the rig parameters to achieve alignment. Recently, systems
such as the Stereo3D CAT (Dashwood Cinema Solutions,
Toronto Canada)[ | ] have been introduced to aid the manual
alignment of stereo rigs on set with accurate localization
of markers in a test chart. Currently rig alignment on a
film production set still relies on either expensive custom
hardware or highly experienced operators to align the
cameras aided by custom alignment charts and tools.

On the other hand, camera calibration is a mathemati-
cally well-defined problem in machine vision. Researchers
first use 3D or 2D objects to estimate intrinsic parameters
of the camera [22, 14, 23]. The camera intrinsic parame-
ters describe the optical properties of the camera such as
the focal length and lens distortion. They then obtain ex-
trinsic parameters of the stereo camera rig [13, 19] which
describe the relative orientation and position of each camer-
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a in the rig relative to a base frame (typically corresponding
either one of the cameras or to a frame of reference fixed to
the scene). This is accomplished by analyzing and apply-
ing geometrical constraints to stereoscopic images or image
sequences. The process is usually facilitated by imaging a
target with known geometry, such as a chessboard.

These techniques potentially provide an affordable
solution to professional camera calibration. In this paper
we describe an extension of computer vision algorithms
for camera calibration to the alignment of a stereoscopic
film camera rig. Our goals for the system are as follows.
First, it should be affordable to independent 3D film
makers both in hardware and software. Second, it should
provide competitive accuracy with commercial systems and
machine vision standards.

However, there are several challenges to achieving
these goals by straightforwardly applying machine vision
techniques to film-making. The first challenge comes
from high image resolution. Manual alignment of a rig
on set requires interactive execution speeds to allow for
adjustments while monitoring responses. Furthermore the
camera chosen to mount on the rig, lens selection or
zoom, interaxial distance, and other parameters change
frequently from shot to shot eliminating the possibility
of ‘locking down’ the rig after a single time consuming
calibration. Current software implementations of standard
techniques are much too slow. Specifically, the corner
detection processing in the most popular technique [5]
is not fast enough for interactive response. Second, the
film production crew must do the selection of suitable
image frames for the calibration process on set. A
skilled cinematographer, camera operator or stereographer
can be assumed but familiarity with computer vision
techniques can not. This is further complicated by the
fact that some cameras can only record video instead of an
image. Manually selecting frames for calibration is time
consuming and may be inaccurate. Finally, a wide variety
of lighting conditions, focal lengths, camera distances and
environments must be accommodated due to the large
variety of scenes in even a single film production. This
removes the possibility of relying on a single highly precise
calibration object. Planar chessboards are relatively easy to
construct and modify making them an attractive and flexible
solution. However a chessboard printed and mounted
on a flat substrate using economical techniques available
on set may not be geometrically accurate. To overcome
these difficulties, we propose three improvements which are
introduced in section 4.

To summarize, the contribution of our paper are as
follows:

e A novel design called the marker chessboard that
greatly speeds up corner detection.

e An automatic key frame selection algorithm that
liberates people from repetitive and time consuming
work.

e An easily implemented bundle adjustment method to
improve the accuracy of intrinsic calibration.

e A low-cost online stereo camera calibration system.

2. Related work

There are two steps to recover the relative pose of
a stereo camera in Euclidean space. The first step is
to compute the camera matrix and distortion parameters
usually by analyzing images of a target with known
geometry.  These parameters are called the intrinsic
parameters since they are relatively stable for a given
camera. In a film production context these are often fixed
(with the exception of focus) for a given camera-lens pair
for a group of shots or often even for an entire production
(with a variety of cameras or rigs used across shots).
The second step is to compute the rotation matrix and
translation vector between two cameras. These parameters
are called extrinsic parameters since they are changed by
the relative pose of cameras. In a film production scenario
the extrinsic parameters of a rig vary from shot to shot or
occasionally within a shot as cinematographers vary the
interaxial distance and convergence to achieve the desired
stereoscopic effects. Thus monitoring and alignment of the
extrinsic parameters is a frequent and routine requirement.
It is worth noting that, embedded in the estimation of
the camera intrinsic parameters, another set of extrinsic
parameters is involved, but it describes the relative pose
between the target and its original (canonical) pose rather
than the relationship between two cameras.

For intrinsic calibration, choices of calibration target,
lens distortion model, and optimization method are three
of the most important factors impacting accuracy. For
the calibration target, we chose a planar chessboard.
Such a target could even be manufactured on set using
standard office printing equipment and flat stock materials
typically available on set, allowing for flexibility to address
unforeseen issues with scale, access, illumination or other
factors. Another advantage is that a significant number
of research have deeply investigated this configuration
and have led to impressive accuracy improvements. For
example, Datta et al. [9] proposed an iterative refinement
algorithm to increase the accuracy of control point
localization and calibration results. Albarelli et al. [2]
proposed a bundle adjustment based algorithm and obtained
a very accurate result. For the lens distortion model, we
chose three radial and two tangential distortion coefficients
proposed by Brown [7]. Such a model is applicable to most
film camera-lens combinations and in our experiments, they
have shown to be accurate enough for stereo rig calibration.
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For the optimization method, we use the implementation of
[23] in Open CV [6] for its free availability and efficiency.

For extrinsic calibration, there are also many algorithms
available in the computer vision literature. The eight point
[13] and five point [19] algorithms are the two standard
ones and can be performed with the given number of
stereo correspondences in a general scene. However, it is
not possible to recover the camera position displacement
from a given fundamental matrix based on the eight points
algorithm. Also, image noise will influence the accuracy
of the five point algorithm in practice. Our method obtains
the relative pose from a chessboard pattern as we do in the
intrinsic calibration. Camera crew are used to relying on
calibration charts for colour, geometry and lighting control
and thus this will be a standard procedure for them. We
first get the relative pose between each camera and the
target, then we obtain the relative pose of cameras by
rotating and translating the right camera to the left camera’s
coordinate frame. In this method, we can take advantage
of known correspondence between many features in the
target (corners in the chessboard) and reduce the influence
of noise.

3. System overview

Our system has two parts. The first part computes
intrinsic parameters for different lenses. Typically on a
film set, focal length is controlled by using a set of high-
quality fixed focal length ‘prime’ lenses but occasionally,
particularly on low budget productions, a zoom lens may be
used. For our testing this was convenient and we calculated
intrinsic parameters for a range of different zoom levels. At
a specified zoom level, we first record a video in which an
operator intermittently changes the position and orientation
of the chessboard target. Then our system automatically
selects proper frames from the video to estimate the intrinsic
parameters. We call these frames as key frames in this
paper. The second part computes extrinsic parameters of
a stereo camera rig. We mounted the stereo camera pair in
a mirror rig. Our system provides the relative pose of the
cameras at an interactive rate based on the known intrinsic
parameters and the stereo correspondences in the captured
frames.

The rest of paper is organized as follows. Section
4 describes three improvements for calibrating intrinsic
parameters from a video. Section 5 reports performance
of the extrinsic calibration system. Finally, we draw
conclusions and discussion in section 6.

4. Intrinsic calibration
4.1. Marker chessboard

The chessboard pattern is widely used in calibration and
its corner positions can be automatically detected in Open

CV. The corner detection algorithm works in two steps. The
first step is to obtain rough corner positions. The algorithm
first finds all squares as connected components, then fits
a polygon to each connected component. If a resulting
polygon has four vertices, it is a qualified square. Then
it orders qualified squares into a grid until the pattern is
found. The second step is to refine the resulting corner
position to sub-pixel localization. However, there are two
problems with this algorithm. First, the speed decreases
rapidly with increase in image resolution. For a 1920 X
1080 image, it takes about 200ms per frame. Second,
processing speed severely degrades when the image quality
suffers from motion blur which frequently happens when
the operator moves the target. Through the experiments, we
found the first step costs most of execution time. If we can
replace it with a time efficient method, we can greatly speed
up the corner detection processing.

Our method is inspired by the manual corner detection
method in the camera calibration toolbox [5]. In their
method, the user needs to select four corner positions
that are located in the outermost level of the chessboard
with mouse clicks. Then it computes a homography
matrix from the corresponding physical corners to these
four corners, and uses the homography matrix to obtain
the rough position of the remaining corners within the
chessboard. If we can automatically detect four special
corners in the chessboard, this manual method can be
automated. This was our motivation for adding four
markers to the traditional chessboard. Figure 1 shows our
new chessboard which we refer to as the marker chessboard.
Both markers and chessboard have been used in corner
detection for camera calibration [10]. The combination of
these techniques have not, to our knowledge, been proposed
in previous research.

Compared with the traditional “black” and “white”
chessboard, the marker chessboard has four -easily
identifiable markers in the four corners. Each marker is
made a little bit larger than the square of the chessboard for
easy detection (edge length ratio between them is 2:1.5).
Without loss of generality, for a chessboard with a size
of w' x I (w' and R’ are the number of inside corners
along the chessboard width and height, respectively, with
w’ > h'), we set origin at the top-left inside corner and set
the small square edge length as the unit length. Relative to
this coordinate frame, then the marker centers are placed
at the coordinate of (—1,—1), (w’, —1), (w',h’), (=1, 1")
respectively and their edges are parallel with the chessboard
square edges. We denote the marker centers and inside
corner as p,, and p. in the physical board, and p/,, and p/, in
the image and express them in homogeneous coordinates.
For an image with small distortion, they are mapped by a
homography matrix H in the perspective transformation:
pl, = Hp,, and p/, = Hp, respectively. The algorithm
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of marker chessboard detection is as follows:

1. Detect or track four marker centers in the image. If
less than four markers are found, stop corner detection
in the current frame immediately.

2. Compute the homography matrix H from physical
marker centers p,, to image marker centers p/,,.

3. Compute the rough position of corners by p,, = Hp,.

4. Refine the corners p/, with sub-pixel accuracy.

We choose the marker detection method in ArUco [20]
for its unambiguous marker coding. One modification
of their marker detection method is that we use adaptive
thresholding of the perimeters of potential markers. Since
the whole chessboard should be shot in the image, the
maximal edge length of marker is I,,, = max(w/w’, h/h'),
where w and h are the width and height of image
with w > h.  We heuristically set the maximum
perimeter of a candidate marker as 6 x l,,,, and also set
the minimum threshold of it as [, to filter short edges in
the image. Moreover, a marker position should have small
displacement in consecutive frames, therefore the algorithm
can track the markers in a small region of interest in the
image (searching 10 pixels beyond the bounding box of
the marker corners works in practice) to further improve
detection speed.

Figure 2 shows a speed comparison between the
traditional chessboard using Open CV method and the
marker chessboard using our method. The test video has
180 frames during which the chessboard is changed from
one pose to another. As we can see, our method can greatly
speed up corner detection without losing accuracy. Figure
2(b) shows a detailed comparison over the first 23 frames.
Our method is so fast that the execution time is only a few
milliseconds in some frames when marker tracking is near
perfect (little or no motion between frames). Even without
marker tracking, our method takes only about 30ms per
frame (see the first frame in the Figure 2(b)). In contrast,
the Open CV method takes about 200ms per frame.

Table 1 shows the average time cost for detected, un-
detected and all frames for the same video. Detected
frames are frames where the corners could be extracted
from the frame, un-detected where the frame was discarded
from further analysis and the ‘all’ conditions considers both
detected and undetected frames. As we can see, our method
speeds up the corner detection process by more than 10
times. The number of detected frames is smaller than the
Open CV method since our method automatically discards
the blurred images in the process of marker detection. On
the contrary, the Open CV method spends a lot of execution
time processing blurred images which provide little useful
data but require significant computational effort (see the

(2)

Speed Comparison
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(b) Detailed view of (a) over the first 23 frames.

Figure 2: Corner detection speed for a 180 frame calibration
sequence.

Frame Statistic Open CV | Our method
Detected number 151 128
Avg detected (ms) 213 15
Avg un-detected (ms) 1146 22
Avg all (ms) 363 17

Table 1: Statistics of corner detection.

peaks of execution time for the chessboard curve between
frames 80 and 120 in figure 2(a)).

4.2. Key frame selection

Some digital video cameras can only record a video
instead of capturing a single image. So people need to
manually select key frames that are used in calibration. It
is a tedious and time consuming job. For example, for a
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4-minute video, it usually takes more than 5 minutes for
a well-trained operator to select the key frames. Since
the selected frames may suffer from blur, have similar
orientation or miss some particular orientations, they often
need to repeat the process several times.

As suggested by [23] and our experiments, the key
frames should be blur-free and have a sufficiently broad
range of target orientation to allow for robust calibration.
We developed an automatic key frame selection method to
achieve these two demands. It first selects an initial key
frame set by dividing the video into sub-sequences, then
refines the set by iteratively checking each frame. The
algorithm is as follows:

1. Detect the corners in each frame and mark blur free
frames (and their corners) as candidate frames.

2. Divide the whole frame sequence into sub-sequences
so that in each sub-sequence the corner displacement
of consecutive frames is smaller than a threshold 6,,.

3. Randomly select one frame from each sub-sequence as
initial key frame.

4. Calibrate the camera from the key frames.

5. Compute the unit normal of the target plane for each
key frame in world coordinates, and build a kd-tree
with these unit normals.

6. For each candidate frame, compute the target plane
unit normal, and find its nearest neighbor distance in
the kd-tree. If the distance is larger than a threshold
0y, add it to the key frames and rebuild kd-tree.

7. Find the nearest neighbor of each key frame in the
kd-tee (exclude itself). If its distance is less than the
threshold 6, discard the one with larger blur.

8. If there is new frame added or discarded, rebuild kd-
tree and go to step 4. Otherwise finish the selection.

In the candidate frame selection, we measure the motion
blur using the corner displacement between the current
frame and the preceding and subsequent frame. If the
corner displacement is less than certain threshold (we set
it empirically as 0.5 pixels), the frame is regarded as a blur
free candidate frame. Only these candidate frames are used
in key frame selection.

The algorithm divides the whole frame sequence
into sub-sequences based on an observation: when the
chessboard is changed from one pose to next pose, the
corner position has a large displacement. So a displacement
jump (#,) indicates that the chessboard may have been
placed in a different pose in the subsequent frames. In our
implementation, we set 0, as 0.02 x maz(w, h).

1200

Figure 3: Key frame orientations.

We randomly select one frame from each sub-sequence
as initial key frame for two reasons: first, there is, by
construction, only a small corner displacement within a sub-
sequence; second, every frame is guaranteed to be blur-free
by step 1.

We use the unit normal of the target plane to describe
the chessboard pose. Given a (roughly) calibrated camera
in step 4, we compute the unit normal from 3D-2D
correspondences for each frame. The unit normals are
distributed over a unit sphere and their relative distance
is defined as the geodesic distance in the sphere. We
use the computationally more expedient calculation of the
Euclidean distance to query the nearest neighbor in the
kd-tree [4] since the Euclidean distance is approximately
equal to the geodesic distance when two normals are close
enough. We use the kd-tree based ANN (approximate
nearest neighbor) searching method instead of a general
cluster method such as mean shift [8] since the former
approximately provides the key frames without computing
the accurate cluster centers.

We check each candidate frame to make sure no key
frame is missing. This process may add frames to the
kd-tree. Also since a large displacement in the image
plane does not guarantee a large orientation difference
in 3D space, e.g. two parallel frames could differ in
depth or location, we re-check each key frame with its
nearest neighbor in the kd-tree. This process may discard
key frames. Since every new selected key frame has a
distance larger than the 6, from its neighbours, and every
discarded frame increases the minimum distance between
the remaining key frames in the tree, the whole process
converges rapidly. In our experiment, it usually takes 2-3
iterations. The threshold 8, depends on the field of view of
the camera and we empirically set it as 0.08.

Figure 3 shows 30 key frames obtained by our algorithm.
They are automatically selected from 2621 frames with 634
candidate frames. As we can see, all of them have different
orientations.
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(a) before (b) after

Figure 4: Re-projection error before and after bundle
adjustment (magnified by a factor of 40).

Item Open CV Our method
Corner detection (min) 35 3
Key frame selection (sec) N/A 21
Calibration (sec) 4.3 16.7
Re-projection error 0.35 0.22

Table 2: Calibration of intrinsic parameters from a 4-minute
video.

4.3. Bundle adjustment

The precision of intrinsic calibration relies on many
factors [21]. In the experiment, we found that inaccuracy
in the construction of the chessboard has a large impact on
our system. Unfortunately, a highly accurate 2D chessboard
requires very expensive material and needs a remarkable
amount of effort for maintenance. To overcome this
problem, we developed a bundle adjustment method.

T X
s|ly|=R|Y |+T (1)
1 Z

In equation 1, [x,y, 1] is an undistorted corner position
in camera coordinates and [X,Y, Z] is the corresponding
corner position in the chessboard. In a calibrated camera,
we assume intrinsic parameters and target pose to be
correct. Then we can produce a more accurate description
of the chessboard corners in 3D space, [X,Y,Z], by
using equation | and a least square optimization procedure.
Finally we re-calibrate the camera using the refined
chessboard geometry.

Our method is inspired by [2], however there are two
differences between our implementation and theirs. First,
we drop the assumption that all corners lay in a plane
which does not hold in our case (allowing for manufacturing
tolerances effecting the z direction such as rippling of the
printed material or variation in adhesion to the substrate).
Second, we assume the extrinsic parameters R and 1" are
accurate enough to be used in the bundle adjustment to

simplify the optimization process. In the implementation,
we only do one iteration of the bundle adjustment since
we found that the changes of re-projection error and the
intrinsic parameters are very small after the first iteration.

Figure 4 shows the re-projection error distribution before
(0.35 pixels) and after (0.22 pixels) bundle adjustment.
Considering the image resolution, this error is acceptable
for the system in its current stage.

4.4. Intrinsic parameter estimation performance

Table 2 shows an example of the result of the entire
process of intrinsic parameter estimation from a 4-minute
video. Comparing with 35 minutes of Open CV method,
our corner detection method only requires 3 minutes. Also
the key frame selection algorithm automatically selects
30 key frames from the video and the bundle adjustment
provides more accurate intrinsic parameters with only a
small increment in processing time.

5. Extrinsic calibration

Figure 5 gives us an overview of the system and table
3 lists the equipments used. The marker chessboard was
made by printing out the marker chessboard pattern on an
A4 sheet of paper and stuck to a flat board. Two Canon
XF105 cameras were synchronized by an AJA Genl0 sync
generator. The software processed synchronous images
from the cameras through the capture card.

Our software is based on Open CV which provides
efficient fundamental image processing and camera
calibration algorithms. The software frame rate is about
1 fps. For every processed frame, it first detects the
markers and inside corner positions in both the left and
right images. Then it provides two kinds of feedback to
the camera operator to indicate the stereo camera position
and orientation.

The first kind of feedback is image-based measurement
which is based on the relative location of the four marker
centers in each image. The four marker centers form a
rectangle on the target plane and a quadrilateral in the
left and right image respectively. The algorithm provides
zoom level ratio by comparing the perimeters of these two
quadrilaterals. Also it provides vertical and horizontal
offset by averaging the offset of marker center positions
in the horizontal and vertical direction respectively. The
rotation is obtained by comparing the angles formed by
each quadrilateral’s diagonal and horizontal line. The
image based measurement has its merits on simplicity and
stability. However, it is not possible to differentiate the
effects between the interaxial distance and the convergence
angle directly. Operators need to place the chessboard
at different depth to adjust these parameters. Similar to
other stereo alignment systems such as [15], the software
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Figure 5: System overview: the arrows indicate the data
flow.

Item Equipment
Calibration target Marker chessboard
Stereo camera Two Canon XF105
Sync Generator AJA Genl0
Capture Card Black Magic Extreme 3D+
Computer Duo Core 2.4GHz, 2.0 GB memory

Table 3: Extrinsic calibration test bed.

provides an image difference to quickly reveal coarse
misalignments such as a vertical offset.

The second kind of feedback is a 3D-based measurement
which is based on the inside corner positions of each
square within the calibration grid (14 x 10) and the
intrinsic parameters of the left and right cameras. We
use these points to estimate the relative pose in form of
the rotation matrix between the two cameras. Then we
compute convergence, tilt, and roll angles from the rotation
matrix. These three angles provide additional information
of relative pose of two cameras, especially the convergence
and tilt angles (the roll angle can be roughly estimated
by rotation in the image-based measurement). In the
experiment, we can adjust the tilt and roll angle to less
than about 0.2° . However, we found that the convergence
angle estimated is noisier and the error can vary between
about —1.0° to 1.0°. Our analysis is that: although 5 or
8 points can provide minimal solution for relative camera
pose, accurate result relies on more points or multiple
chessboard orientations since the corner detection suffers
from noise. The main contributions of this paper are to
intrinsic camera calibration for stereo rigs and the extrinsic

Figure 6: An anaglyph image after camera alignment, best
viewed with Red (left)/Cyan (right) glasses.

Figure 7: SIFT feature matchings that have less than 1 pixel
vertical offset.

calibration implementation is preliminary. We plan to
improve the accuracy and robustness of the system in future
work.

Figure 6 shows an anaglyph image captured by our
system. In the experiment, we use SIFT feature [18]
matchings to estimate the vertical offset and verify the
alignment guidance provided by our system. We first detect
the SIFT features in the left and right undistorted images,
then match them by estimating the fundamental matrix in
a RANSAC [!1] loop. For figure 6, we obtained 381
matching pairs with an average vertical offset of 1.84 pixels.
Among them, there are 121 matching pairs (shown in Figure
7) whose vertical offset is less than 1 pixel.

6. Conclusion and discussion

In this paper, we propose a low cost, fast and accurate
high-definition camera calibration system. The system can
provide the relative camera orientation at an interactive rate.
The novel design of the marker chessboard, the key frame
selection algorithm and the bundle adjustment enable our
system to automatically obtain accurate camera intrinsic
parameters in a short time. Also our extrinsic calibration
system provides both 2D and 3D feedback to help operators
set the stereo camera to a desired orientation.

Though the marker chessboard shows good performance
compared to the traditional chessboard, there are two
aspects that a user should pay attention to. The first is that
the homography mapping may fail in the case of images
with very large distortion, e.g. the images taken from
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fisheye cameras. The second is that the whole chessboard
should be captured without any occlusion, otherwise the
corner position can not be estimated correctly. In practice
this is not an extreme constraint as the operator places the
target in the scene. Alternatively, variants of the intrinsic
estimation technique could be developed that are robust to
occlusion.

There are many applications that can benefit from our
research directly. For example, the chessboard can have
more inside corners, which will make the calibration more
accurate. And we can use multiple marker chessboards
in the 3D calibration target by changing the marker code.
Also, the online intrinsic calibration becomes feasible
because the corner detection is faster than the camera frame
rate.

There are several improvements or extensions that could
be made to our system. First, the camera model now
used does not consider the influence of rig mirror which
reflects or refracts light to the cameras. Second, the frame
rate of extrinsic calibration needs to be increased for faster
response. Last but not least, we plan to use general feature
points instead of chessboard corners to get the relative
camera pose in the future.
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